Novel European free-living, non-diazotrophic Bradyrhizobium isolates from contrasting soils that lack nodulation and nitrogen fixation genes – a genome comparison
نویسندگان
چکیده
The slow-growing genus Bradyrhizobium is biologically important in soils, with different representatives found to perform a range of biochemical functions including photosynthesis, induction of root nodules and symbiotic nitrogen fixation and denitrification. Consequently, the role of the genus in soil ecology and biogeochemical transformations is of agricultural and environmental significance. Some isolates of Bradyrhizobium have been shown to be non-symbiotic and do not possess the ability to form nodules. Here we present the genome and gene annotations of two such free-living Bradyrhizobium isolates, named G22 and BF49, from soils with differing long-term management regimes (grassland and bare fallow respectively) in addition to carbon metabolism analysis. These Bradyrhizobium isolates are the first to be isolated and sequenced from European soil and are the first free-living Bradyrhizobium isolates, lacking both nodulation and nitrogen fixation genes, to have their genomes sequenced and assembled from cultured samples. The G22 and BF49 genomes are distinctly different with respect to size and number of genes; the grassland isolate also contains a plasmid. There are also a number of functional differences between these isolates and other published genomes, suggesting that this ubiquitous genus is extremely heterogeneous and has roles within the community not including symbiotic nitrogen fixation.
منابع مشابه
Genome sequence of Bradyrhizobium sp. LMTR 3, a diazotrophic symbiont of Lima bean (Phaseolus lunatus)
Bradyrhizobium sp. LMTR 3 is a representative strain of one of the geno(species) of diazotrophic symbionts associated with Lima bean (Phaseolus lunatus) in Peru. Its 7.83 Mb genome was sequenced using the Illumina technology and found to encode a complete set of genes required for nodulation and nitrogen fixation, and additional genes putatively involved in root colonization. Its draft genome s...
متن کاملThe comparison of growth parameter and pigments content of bean (Phaseolus vulgaris L.) plants inoculated with various Kerman indigenous rhizobacteria
Nitrogen deficit is one of the most limiting nutrients for plant production. Therefore, identifying diazotrophic indigenous inoculants to promote nitrogen fixation have a great importance in agriculture. In the current study, a number of rhizobacteria isolated from nodules of different legumes cultured in Kerman (IRAN) province. Isolates were screened for their ability to grow on N-free media. ...
متن کاملDraft genome sequence of Bradyrhizobium manausense strain BR 3351T, an effective symbiont isolated from Amazon rainforest
The strain BR 3351T (Bradyrhizobium manausense) was obtained from nodules of cowpea (Vigna unguiculata L. Walp) growing in soil collected from Amazon rainforest. Furthermore, it was observed that the strain has high capacity to fix nitrogen symbiotically in symbioses with cowpea. We report here the draft genome sequence of strain BR 3351T. The information presented will be important for compara...
متن کاملDistribution and Phylogeny of Microsymbionts Associated with Cowpea (Vigna unguiculata) Nodulation in Three Agroecological Regions of Mozambique
Cowpea derives most of its N nutrition from biological nitrogen fixation (BNF) via symbiotic bacteroids in root nodules. In Sub-Saharan Africa, the diversity and biogeographic distribution of bacterial microsymbionts nodulating cowpea and other indigenous legumes are not well understood, though needed for increased legume production. The aim of this study was to describe the distribution and ph...
متن کاملDraft Genome Sequence of the Bacteriocin-Producing Bradyrhizobium japonicum Strain FN1
Bradyrhizobium japonicum strain FN1 was found to produce bacteriocin-like zones of clearing when tested against other strains of bradyrhizbia. The genome was sequenced, and several putative bacteriocin-producing genes, in addition to the expected genes involved in nodulation and nitrogen fixation, were identified.
متن کامل